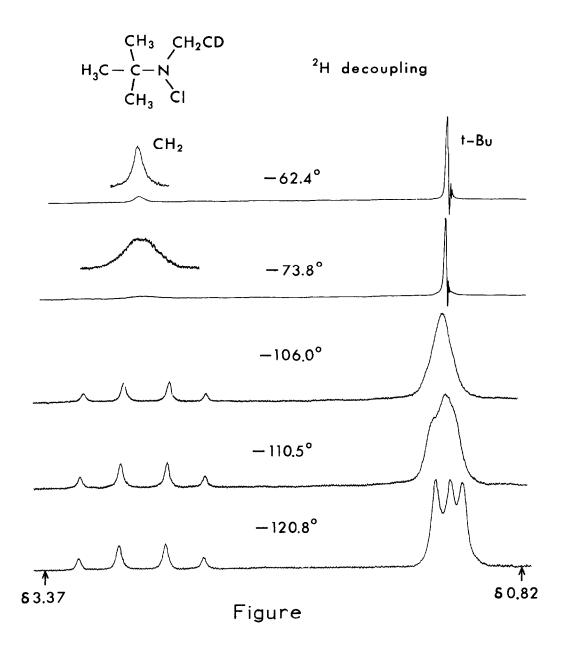

RATE PROCESSES IN N-TERT-BUTYL-N-HALOAMINES C. Hackett Bushweller,¹ Warren G. Anderson, James W. O'Neil, and Howard S. Bilofsky

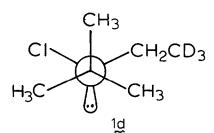
Department of Chemistry, Worcester Polytechnic Institute, Worcester, Massachusetts, 01609, U.S.A.

(Received in USA 5 December 1972; received in UK for publication 21 January 1973)


Although significant experimental and theoretical efforts have been expended in order to provide an incisive depiction of pyramidal inversion about nitrogen,² relatively little information is available regarding substituent effects on the rate of C-N bond rotation.³ This paper concerns the observation of significant substituent effects on the rate of tert-butyl rotation in a series of N-tert-butyl-N-haloamines (1). Examination of the ¹H DNMR spectrum

(60 MHz; ²H decoupled) of ld (Table; 12% v/v in CBrF₃) at -62° (Figure) revealed a kinetically broadened CH₂ resonance (δ 2.86) and a sharp tertbutyl peak (δ 1.21). Upon lowering the temperature, the CH₂ resonance separated cleanly into an AB spectrum

 $(\Delta v_{AB} = 25.7 \text{ Hz}; J_{AB} = 13.2 \text{ Hz})$ consistent with slowing nitrogen <u>inversion</u> on the DNMR time scale and giving a barrier (ΔG^{\ddagger}) to inversion of 9.7 \pm 0.2 kcal/mole at -76° (total line shape method). Further lowering of the temperature resulted in the separation of the tert-butyl resonance into three resolved


717

compound	x	R	ΔG^{\dagger} , kcal/mole
1a	Cl	Cl	9.4 ± 0.2 (-92°)
1ь	Cl	CH 3	8.6 <u>+</u> 0.2 (-114°)
lc ≈	Br	CH 3	8.3 ± 0.2 (-121°)

	Br	CH 3	$8.3 \pm 0.2 (-121^{\circ})$
1 <u>d</u>	Cl	CH_2CD_3	8.6 ± 0.2 (-109°)
le X	Cl	$CH_2C_6H_5$	8.3 ± 0.2 (-122°)
1£	Cl	CH (CD ₃) ₂	7.0 ± 0.4 (-143°)
lg	CH 3	CH 3	6.0 <u>+</u> 0.1 (-153°)

singlets of equal intensity (3H) at δ 1.14, δ 1.20, and δ 1.28 consistent with slowing tert-butyl rotation on the DNMR time scale and also consistent with the symmetry experienced by tert-butyl in the static form of 1d below. A complete line shape analysis of these spectral changes gave $\Delta G^{\dagger} = 8.6 \pm 0.2$ kcal/mole (-109°) for tert-butyl rotation.

The ¹H DNMR spectra of the tert-butyl resonance of other members of the series 1 \sim CH₂CD₃ also revealed changes at low temperatures consistent with slowing tert-butyl rotation (Table). Using the total line shape method, barriers (ΔG^{\ddagger}) to tert-butyl rotation in

la-e were calculated and are compiled in the Table.

Perusal of the Table reveals some trends with regard to the rate of tertbutyl rotation. Substitution of one halogen for an N-methyl results in a significantly increased hindering (ca. 2.5 kcal/mole) of tert-butyl rotation, e.g, compare 1g to 10-e (Table). Substitution of two chlorines increases the barrier by <u>ca</u>. 3.4 kcal/mole in la as compared to lg.⁴ The increased effectiveness of halogen as compared to methyl in hindering tert-butyl rotation attests to the idea that vicinal eclipsed CH3/halogen repulsions are greater than vicinal eclipsed CH₃/CH₃ repulsions across a C-N bond. The significantly higher barrier to inversion as compared to tert-butyl rotation in 1d and 1e ($\Delta G_{inv}^{\dagger} = 9.0$

 \pm 0.2 kcal/mole at -84°) suggests that to a first approximation at low temperatures, tert-butyl is rotating against a noninverting, pyramidal nitrogen. This is in apparent contrast to a series of N-tert-butyl-N,N-dialkylamines in which tert-butyl rotation and nitrogen inversion proceed at the same rate.⁴

A comparison of <u>lb</u> and <u>lc</u> (Table) reveals no effective difference between N-chlorine and N-bromine in hindering tert-butyl rotation. The lower barrier to tert-butyl rotation in <u>lf</u> as compared to <u>lb</u> or <u>ld</u> is consistent with significantly increased crowding in the ground state (decreased pyramidality about nitrogen) and an increased six-fold character to tert-butyl rotation.⁴ It is also interesting to note that the rate of tert-butyl rotation in <u>la</u> is substantially slower than in tert-butyldichlorophosphine ($\Delta G^{\dagger} = 6.4 \pm 0.3$ kcal/mole at -148°)^{5ab} or di-(tert-butyl)-chlorophosphine ($\Delta G^{\dagger} = 6.0 \pm 0.3$ kcal/mole at -158°)^{5b} presumably the result of changes in bond length.

<u>Acknowledgment</u>: We are grateful to the National Science Foundation (GP-18197) for support. J.W.O. appreciates predoctoral fellowships from the National Aeronautics and Space Administration (1970-71) and the Polaroid Corporation (1971-72)

REFERENCES

- Alfred P. Sloan Research Fellow, 1971-74; Camille and Henry Dreyfus Teacher-Scholar, 1972-.
- (2) A. Rauk, L. C. Allen, and K. Mislow, <u>Angew. Chem. internat. Edit.</u>, <u>9</u>, 400 (1970); H. Kessler, <u>ibid.</u>, <u>9</u>, 219 (1970); J. B. Lambert, <u>Top. Stereochem.</u>, <u>6</u>, 20 (1971); J. M. Lehn, <u>Fortschr. Chem. Forsch.</u>, <u>15</u>, 311 (1970).
- (3) N. D. Harmony and M. Sancho, <u>J. Chem. Phys.</u>, <u>47</u>, 1911 (1967) and references therein.
- (4) C. H. Bushweller and W. G. Anderson, <u>Tetrahedron Letters</u>, 129 (1972);
 C. H. Bushweller, J. W. O'Neil, and H. S. Bilofsky, <u>Tetrahedron</u>, <u>27</u>, 5761 (1971);
 C. H. Bushweller, J. W. O'Neil, and H. S. Bilofsky, <u>J. Amer. Chem.</u>
 <u>Soc.</u>, <u>93</u>, 542 (1971).
- (5) (a) J. B. Robert and J. D. Roberts, <u>J. Amer. Chem. Soc.</u>, <u>94</u>, 4902 (1972);
 (b) C. H. Bushweller, J. A. Brunelle, W. G. Anderson, and H. S. Bilofsky, <u>Tetrahedron Letters</u>, 3261 (1972).